Semi-robotic 6 degree of freedom positioning for intracranial high precision radiotherapy; first phantom and clinical results

نویسندگان

  • Jürgen Wilbert
  • Matthias Guckenberger
  • Bülent Polat
  • Otto Sauer
  • Michael Vogele
  • Michael Flentje
  • Reinhart A Sweeney
چکیده

BACKGROUND To introduce a novel method of patient positioning for high precision intracranial radiotherapy. METHODS An infrared(IR)-array, reproducibly attached to the patient via a vacuum-mouthpiece(vMP) and connected to the table via a 6 degree-of-freedom(DoF) mechanical arm serves as positioning and fixation system. After IR-based manual prepositioning to rough treatment position and fixation of the mechanical arm, a cone-beam CT(CBCT) is performed. A robotic 6 DoF treatment couch (HexaPOD) then automatically corrects all remaining translations and rotations. This absolute position of infrared markers at the first fraction acts as reference for the following fractions where patients are manually prepositioned to within +/- 2 mm and +/- 2 degrees of this IR reference position prior to final HexaPOD-based correction; consequently CBCT imaging is only required once at the first treatment fraction.The preclinical feasibility and attainable repositioning accuracy of this method was evaluated on a phantom and human volunteers as was the clinical efficacy on 7 pilot study patients. RESULTS Phantom and volunteer manual IR-based prepositioning to within +/- 2 mm and +/- 2 degrees in 6 DoF was possible within a mean(+/- SD) of 90 +/- 31 and 56 +/- 22 seconds respectively. Mean phantom translational and rotational precision after 6 DoF corrections by the HexaPOD was 0.2 +/- 0.2 mm and 0.7 +/- 0.8 degrees respectively. For the actual patient collective, the mean 3D vector for inter-treatment repositioning accuracy (n = 102) was 1.6 +/- 0.8 mm while intra-fraction movement (n = 110) was 0.6 +/- 0.4 mm. CONCLUSIONS This novel semi-automatic 6DoF IR-based system has been shown to compare favourably with existing non-invasive intracranial repeat fixation systems with respect to handling, reproducibility and, more importantly, intra-fraction rigidity. Some advantages are full cranial positioning flexibility for single and fractionated IGRT treatments and possibly increased patient comfort.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stereoscopic X-ray imaging, cone beam CT, and couch positioning in stereotactic radiotherapy of intracranial tumors: preliminary results from a cross-modality pilot installation

BACKGROUND To assess the accuracy and precision of a fully integrated pilot installation of stereoscopic X-ray imaging and kV-CBCT for automatic couch positioning in stereotactic radiotherapy of intracranial tumors. Positioning errors as detected by stereoscopic X-ray imaging are compared to those by kV-CBCT (i.e. the accuracy of the new method is verified by the established method), and repeat...

متن کامل

Treatment couch positioning uncertainties using an EPID-based method

Introduction: The accuracy of patient positioning plays an important role for radiotherapy tasks. Short and automated Quality Assurance (QA) programs are becoming one of the challenging tasks in Radiotherapy. The current study, investigates the accuracy of treatment couch positioning with four degrees of freedom (4DoF) using a fast and accurate method based on an image acquired...

متن کامل

Comparison of Online 6 Degree-of-Freedom Image Registration of Varian TrueBeam Cone-Beam CT and BrainLab ExacTrac X-Ray for Intracranial Radiosurgery

PURPOSE The study was aimed to compare online 6 degree-of-freedom image registrations of TrueBeam cone-beam computed tomography and BrainLab ExacTrac X-ray imaging systems for intracranial radiosurgery. METHODS Phantom and patient studies were performed on a Varian TrueBeam STx linear accelerator (version 2.5), which is integrated with a BrainLab ExacTrac imaging system (version 6.1.1). The p...

متن کامل

Quality Assurance and Commissioning of an Infrared Marker-Based Patient Positioning System for Frameless Extracranial Stereotactic Radiotherapy

Rapid advancements in imaging technology have led to remarkable improvements in identification and localization of tumors, ushering the era of high-precision techniques in contemporary radiotherapy practice. However, uncertainties in patient set-up and organ motion during a course of fractionated radiotherapy can compromise precision of radiation therapy. Excellent accuracy has been achieved wi...

متن کامل

An accuracy assessment of different rigid body image registration methods and robotic couch positional corrections using a novel phantom.

PURPOSE Image guided radiotherapy (IGRT) using cone beam computed tomography (CBCT) images greatly reduces interfractional patient positional uncertainties. An understanding of uncertainties in the IGRT process itself is essential to ensure appropriate use of this technology. The purpose of this study was to develop a phantom capable of assessing the accuracy of IGRT hardware and software inclu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010